七年级整式的教案(系列12篇)。
作为一名无私奉献的老师,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。教案要怎么写呢?以下是小编收集整理的七年级整式的教案,仅供参考,欢迎大家阅读。
七年级整式的教案 篇1
七年级上2.5有理数的减法(一)教案
教学目标:
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点运用有理数减法法则做有理数减法运算。
教学难点有理数减法法则的得出。
教具学具多媒体、教材、计算器
教学方法研讨法、讲练结合
教学过程一、引入新课:
师:下面列出的是连续四周的最高和最低气温:
第1周第二周第三周第四周
最高气温+6℃0℃+4℃-2℃
最低气温+2℃-5℃-2℃-5℃
周温差
求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3、自己设计一些有理数的`减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:
例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题
教学过程四、练习反馈:
师:巡视个别指导,订正答案。
教学过程五、小结:
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法法则:
减去一个数,等于加上
这个数的相反数。例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
七年级整式的教案 篇2
教学目标
【知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
【过程与方法目标】
【情感态度价值观目标】
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的`点表示出来的情形;
不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度;
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;
5、归纳
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1.先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,-10/3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
七年级整式的教案 篇3
知识目标
使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标
联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标
利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重点
使学会解比例的方法,进一步理解和掌握比例的.基本性质。
难点
体现解比例在生产生活中的广泛应用。
教学过程
教学预设个性修改
目标导学,复习激趣,自主合作,汇报交流,变式训练
创境激疑一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?
合作探究二、探索新知
1、出示埃菲尔铁挂图
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)
(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、 =
拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
总结这节课主要学习了什么内容?
作业布置教材43页5题
板书设计解比例
例3、解比例=
解:2.4 =1.5×6
=( )×( )
( )
教学札记
七年级整式的教案 篇4
?第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
?第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
?第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
?第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率×工作时间。
(4)工作量=人均效率×人数×时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的`是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;
(6)产油量=油菜籽亩产量×含油率×种植面积。
(7)应用:行程问题:路程=时间×速度;
工程问题:工作总量=工作效率×时间;
储蓄利润问题:利息=本金×利率×时间;
本息和=本金+利息。
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率×工作时间。
(4)工作量=人均效率×人数×时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;
(6)产油量=油菜籽亩产量×含油率×种植面积。
(7)应用:行程问题:路程=时间×速度;
工程问题:工作总量=工作效率×时间;
储蓄利润问题:利息=本金×利率×时间;
本息和=本金+利息。
七年级整式的教案 篇5
一、知识与技能
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。
二、过程与方法
通过实例列整式,培养学生分析问题、解决问题的能力。
三、情感态度与价值观
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的'意义。
教学重、难点与关键
1.重点:多项式以及有关概念。
2.难点:准确确定多项式的次数和项。
3.关键:掌握单项式和多项式次数之间的区别和联系。
教具准备 投影仪。
四、课堂引入
一、复习提问 1.什么叫单项式?举例说明。
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。
(3)如图1,三角尺的面积为________.
(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。
七年级整式的教案 篇6
一、教学内容:
教科书第76页,整式的加减单元复习。
二、教学目标:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
三、教学重点和难点:
重点:本章基础知识的归纳、总结;
基础知识的运用;
整式的加减运算。
难点:本章基础知识的归纳、总结;
基础知识的运用;
整式的加减运算。
四、教学方法:
分层次教学,讲授、练习相结合。
五、教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单
- 1 -
项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
?单项式(定义系数次数)整式?多项式(项同类项次数升降幂排列)?
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述? ②在学生回答的基础上,进行归纳总结:
?去(添)括号。整式的加减?合并同类项。
?
二、讲授新课:1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
x?y?z
,4xy,1a
m2n2
,x2+x+1,0,x
1x2?2x
,m,―2.01×105
解:单项式有4xy,整式有4xy,m2n2
,0,m,―2.01×105;
多项式有x?3y?z;
m2n2
,0,m,-2.01×105,x?3y?z。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的'理解。
例2:指出下列单项式的系数、次数:ab,―x25xy5?x
35
yz
。
解:ab:系数是1,次数是2;
―x2:系数是―1,次数是2;
33
5xy5:系数是5,次数是6;
?x3yz:系数是―1,次数是9。
3
35
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x);
(2)―[―(―x+1)]―(x―1);
2
22221(3)―3(1x―2xy+y)+ (2x―xy―2y)。
22
解:(1)原式=2x4―3x2―x+1;
(2)原式=―2x+3;
(3)原式=―2
12
x2+11xy―4y。
2
通过此题强调:(1)去括号(包括去多重括号)的问题;
(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+1ab)]―5ab,其2
中a=1,b=―。
23
解:化简的结果是:3ab2,求值的结果是2。
3
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求
1这个多项式,并求当x=―1,y=时,这个多项式的值。
22
解:此多项式为3x3―5x2y―2y3;
值为―5。
4
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7 四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9 板书设计:教学后记:
七年级整式的教案 篇7
教学目标:
1.理解同类项的概念,在具体情景中认识同类项。
2.初步体会数学与人类生活的密切联系。
教学重点:理解同类项的概念。
教学难点:根据同类项的概念在多项式中找同类项。
教学过程:
一、复习引入
1.创设问题情境
(1)5个人+8个人=
(2)5只羊+8只羊=
(3)5个人+8只羊=
2.观察下列各单项式,把你认为类型相同的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,9a,-,0,0.4mn2,2xy2.
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
二、讲授新课
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
2.例题:
【例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。()
(2)2ab与-5ab是同类项。 ()
(3)3x2y与-yx2是同类项。()
(4)5ab2与-2ab2c是同类项。 ()
(5)23与32是同类项。()
【例2】指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+xy2-yx2.
【例3】k取何值时,3xky与-x2y是同类项?
【例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1) (s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.
3.课堂练习:请写出2ab2c3的一个同类项。你能写出多少个?它本身是自己的同类项吗?
三、课时小结
1.理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项。
2.这堂课运用到分类思想和整体思想等数学思想方法。
3.学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
四、课堂作业
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与n的值分别是.?
第2课时合并同类项
教学目的:
1.理解合并同类项的概念,掌握合并同类项的法则。
2.渗透分类和类比的思想方法。
教学重点:正确合并同类项。
教学难点:找出同类项并正确地合并。
教学过程:
一、复习引入
为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问:
1.他们两次共买了多少本软面抄和多少支水笔?
2.若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
二、讲授新课
1.合并同类项的定义:
(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板书:合并同类项。)
2.例题:
【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。
根据以上合并同类项的'实例,让学生讨论、归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
【例2】下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4;(2)3x+2y=5xy;
(3)7x2-3x2=4; (4)9a2b-9ba2=0.
【例3】合并下列多项式中的同类项:
(1)2a2b-3a2b+0.5a2b;
(2)a3-a2b+ab2+a2b-ab2+b3;
(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.
(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。)
【例4】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.
试一试把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便。)
3.课堂练习:课本P65练习第1,2,3题。
三、课时小结
1.要牢记法则,熟练正确地合并同类项,以防止出现类似2x2+3x2=5x4的错误。
2.从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项。
四、课堂作业
课本P69习题2.2的第1题。
第3课时去括号
教学目标:
1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
2.经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
教学重点:准确应用去括号法则将整式化简。
教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误。
七年级整式的教案 篇8
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。
解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;
xy5:系数是 ,次数是6; :系数是― ,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的'“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化简的结果是:3ab2,求值的结果是 。
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。
解:此多项式为3x3―5x2y―2y3;值为― 。
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
七年级整式的教案 篇9
一、素质教育目标
(一)知识教学点
1.理解:整式的加减实质就是去括号,合并同类项.
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.
3.运用:能够正确地进行整式的加减运算.
(二)能力训练点
1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
2.培养学生用代数方法解几何问题的.思路.
(三)德育渗透点
渗透教学知识来源于生活,又要为生活而服务的辩证观点.
(四)美育渗透点
整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.
二、学法引导
1.教学方法:以旧引新,通过自己操作发现解题规律.
2.学生学法:练习→总结步骤→练习
三、重点、难点、疑点及解决办法
整式加减运算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习引入
(出示投影1)
化简下列各式
(1)
;
(2)
;
(3)
.
学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.
师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)
学生活动:同桌同学互相讨论、研究,若讨论的结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)
【教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.
师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.
[板书]
【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.
(二)探求新知,讲授新课
七年级整式的教案 篇10
教学目标:
通过类比数的运算律得出同类项的概念,掌握合并同类项法则,会对同类项进行合并,发展类比的数学思想方法。
教学重点:
合并同类项的法则及应用。
教学难点:
正确判断同类项,并同类项。
教学过程:
一、情境诱导
前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:
在西宁到拉萨路段,列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度是120km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要th,你能用含t的式子表示这段铁路的全长吗?(请列出算式)
得到:100t+120×2.1t即:100t+252t
对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)
二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。)
探究提纲:
1.填空:
(1)2t+52t=()t
(2)3x2+2x2=()x2
(3)3ab2-5ab2=()ab2
(4)4xy+6xy=
2.如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?
3.仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳
1、抽有问题的'学生逐题汇报,学生说教师板书。
2.发动学生进行评价、补充、完善,学生说老师改写,3.教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)
1.说出两组同类项
2.下列各组是同类项的是()
A2x3与3x2B12ax与8bxCx4与a4D π与-3
3.下列各题计算的结果对不对?如果不对,指出错在哪里?
(1)3a+2b=5ab(2)5y2-2y2=3
(3)2ab-2ba=0(4)3x2y-5xy2=-2x2y
4.–xmy与45x3yn是同类项,则m=_______,n=______。
5.计算:
课本P65练习1.
6.课本习题2.2第1
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)
六、作业布置
课本习题2.2第5、6题。
七年级整式的教案 篇11
一、教学目标
1.知识目标:了解整式的定义和基本概念,掌握整式的基本运算法则,能够进行整式的加减乘除运算。
2.能力目标:能够熟练地运用整式进行计算,培养学生的逻辑推理和运算能力。
3.情感目标:培养学生的自主学习和合作学习的能力,激发学生对数学的兴趣和对数学习得好的自信心。
二、教学重难点
1.整式的定义和基本概念的掌握。
2.整式的加减乘除运算的熟练运用。
三、教学过程
1.导入(5分钟)
引导学生复习代数表达式的概念,提出什么是整式的问题。通过让学生观察一些实例,引导他们提出整式的定义和特点。
2.概念讲解(10分钟)
通过教师的讲解,介绍整式的定义和基本概念,包括整式的组成元素和整式的分类。
3.例题讲解(15分钟)
通过一些例题的'讲解,引导学生掌握整式的加减法运算。提供一些基础的整式加减法运算题目,逐步引导学生熟悉整式的运算法则。
4.练习与巩固(20分钟)
让学生进行练习题,巩固所学知识。提供一些较难的整式加减法运算题目,培养学生的逻辑思维和运算能力。
5.拓展与应用(15分钟)
结合生活实际和数学应用,提供一些整式乘除法的例题进行讲解,帮助学生理解整式的乘除法运算规则。
6.总结与归纳(5分钟)
对整节课进行总结,让学生回答整式的定义和特点的问题。
四、教学评价
1.学生在课堂上的表现和主动参与度。
2.学生的练习和作业完成情况。
3.学生的成绩和学业水平提高情况。
五、教学反思
整式作为代数的基础,对学生的逻辑思维和运算能力有着很重要的影响。通过这堂课的教学,学生对整式的定义和基本运算法则有了更深入的理解和运用。同时,教学过程中还注重培养学生的自主学习和合作学习能力,提高学生的学习兴趣和学习效果。在教学反思中,要不断改进教学方法和策略,提高教学效果。
七年级整式的教案 篇12
【教学目标】
1.理解同类项、合并同类项的概念。
2.掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3.感受其中的“数式通性”和类比的数学思想。
【教学重点】
理解同类项的概念;掌握合并同类项法则。
【教学难点】
正确运用法则及运算律合并同类项。
【教学过程】
一、知识链接
1.运用运算律计算下列各题。
①6×20+3×20=__________ ②6×(-20)+3×(-20)=__________
2.口答。
8个人+5个人=__________ 8只羊+5只羊=__________
8个人+5只羊=__________
[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]
二、探究新知
探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?
(1)请列式表示:,你能对上式进行化简计算吗?
(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]
探究二:根据以上式子的运算,化简下列式子。
(1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点,有何规律?
[意图:让学生经历动手、观察、猜想、归纳的'学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]
三、例题精炼
例1.合并同类项。
4x2+2x+7+3x-8x2-2
例2.求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=2/3。
[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]
四、课堂小结
这节课你学到了哪些知识?
[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]
五、课堂检测(略)
[意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]